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Abstract Communication algorithms, tailored for molecular dynamics simulation
on d-meshes, are evaluated in terms of communication efficiency. It has been shown
elsewhere that d-meshes are better than other regular topologies, e.g., hypercubes and
standard toroidal 4-meshes, when compared in their diameter and average distance
among nodes. Collective communication is needed in molecular dynamics simulation
for the distribution of coordinates and calculation and distribution of new energies.
We show that both collective communication patterns used in molecular dynamics
can be efficiently solved with congestion-free algorithms for all-to-all communica-
tion based on store-and-forward routing and routing tables. Our results indicate that
d-meshes compete with hypercubes in parallel computers. Therefore d-meshes can
also be used as a communication upgrade of existing molecular dynamics simula-
tion platforms and can be successfully applied to perform fast molecular dynamics
simulation.

Keywords d-meshes · Parallel molecular dynamics simulation ·
Computer interconnection topologies

1 Introduction

Large-scale natural phenomena, experiments that would cost vast amounts of money,
those that are ecologically problematic or dangerous, or those that can not be imple-
mented experimentally [1], can first be simulated in order to predict the outcome
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[2–4]. Such simulations need a significant amount of computing. Parallel compu-
ter clusters provide the computational rates necessary for mentioned computer
simulations.

Currently the more slowly increasing rate in processor performance is being tem-
porarily compensated by larger numbers of parallel processors that cooperate on the
same problem. Today, it is not unusual to utilize parallel machines with several thou-
sand processors; however such huge parallel machines are not always able to exe-
cute numerical algorithms efficiently. It is known that only scalable algorithms can
be implemented efficiently on a massive parallel machine [5]. Typically, such algo-
rithms need only a small amount of communication between processors. By increa-
sing the number of processors, the computational load on each processor decreases,
but the communication requirements increase. There is a limit beyond which any
further increase in the number of processors is not profitable since the computatio-
nal load becomes too small compared to the communication load. Therefore, beside
the increased computational performance, the communication speed should also be
increased.

The efficiency of any parallel algorithms is to some degree limited by their com-
munication patterns on a chosen topology [6]. For example, in molecular dynamics
simulation, all-to-all collective communication patterns must be performed for the
distribution of updated atomic coordinates and the calculation of new forces for all
particles. The amount of communication increases with the number of processors
[6,7] and in this way limits the speed-up of the simulation. We will focus in this paper
on the communication speed, which can be increased with an addition of extra links
to an existing interconnection network in a computational cluster. It is assumed that
the routing switch is a separate component of the computing cluster, which is able to
manage all communication traffic. Calculation and communication can be performed
in parallel to some extent. Routing is implemented by routing tables and separate com-
munication queues on each communication channel. Processing units are thus loaded
only by their own communicated data [8]. Such architectures can provide a mode-
rate number of communication links on each processing node. We further suppose an
isomorphic interconnection network, composed of the same architecture of network
nodes, even if the number of nodes is increased.

Communication patterns of established topologies, such as meshes and hypercubes,
have been investigated in detail [9]. Meshes, perhaps the most widely used today, have
well-known preferences and weaknesses [10,11]. Their preferences are primarily in
the scalability and simple routing algorithms [12]. The simplicity of these algorithms is
due to their simple structure. One of the weaknesses of meshes is their relatively large
diameter, which prevents the efficient broadcast and exchange of messages among
all system nodes. With the introduction of additional links as proposed in d-meshes
[13], the weakness of a small diameter is mitigated. In order to take advantage of
additional links, new routing algorithms must be applied. In this paper, d-meshes
are analyzed regarding the communication patterns that are needed for parallel mole-
cular dynamic simulation. A new congestion-free algorithm for all-to-all routing is
proposed and analyzed, restricted to message-passing based on the store-and-forward
method [9].
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The rest of the paper is organized as follows. First, a short background of molecular
dynamics simulation is given with an analysis of the required communication patterns.
In Sect. 3, d-meshes are described and the new all-to-all routing algorithm is explained.
Finally, the comparative performance results are given for different topologies. The
paper concludes with some directions for future work.

2 Communication patterns in parallel molecular dynamics

Molecular dynamics simulation is based on the solution of a system of Newtonian
equations of motion for N atoms [14]. The solution, evolving in time, is obtained by
a simple numerical integration in a sequence of time steps, each of which includes
an energy calculation and a coordinate update. In parallel computation, calculations
normally performed on a single processor are distributed among P processors of the
parallel computer. In the parallel molecular dynamics, both the energy calculation and
the coordinate updates are parallelized. Each processor calculates a fraction, 1/P of
the calculations, needed to calculate total energy, and performs N/P of the N atoms
coordinate updates. Because of the sequential nature of the simulation time steps, the
energy calculation and the coordinate updates must follow sequentially: the energy
must be known to update the coordinates, and the updated coordinates must be known
to calculate the new energy [14].

In parallel molecular dynamics simulation, processors communicate data between
the energy calculation and the coordinate updates [15]. After the calculation of energy,
each processor has only 1/P of the total system energy. The sum of these partial
energies is equal to the total energy, which is the same as what is calculated by a single
processor. At each time step, all processors perform a collective reduce-and-scatter
communication. The collective reduction produces the total sum of the energy, while
the scatter operation distributes the calculated total energy among the processors,
because each processor needs only the new energy of their N/P atoms for which
it will update the coordinates [16]. After the coordinate update, all of the processors
broadcast the new coordinates of their local atoms to all other processors using all-to-all
broadcast communications. It follows that the processors exchange packets of data in
multiples of N/P atoms.

In some traditional approaches to the parallel molecular dynamics, every processor
needs the coordinates of all of the atoms to perform the parallel energy calculation [17,
18]. A collective gather communication performs the required all-to-all assembling
of new local coordinates, after which every processor retains the updated coordinates
for all N atoms and calculates the new energy and coordinates. The processors again
exchange packets of data in multiples of N/P atoms. The collective reduce-and-scatter
and the collective gather operations are related in the sense that they need all-to-all
communication. They differ in the sequence of transfers, which is reversed, and in the
additional summation of the received data (partial energies) by the collective reduce-
and-scatter operation. It follows that the most time consuming communication of every
parallel molecular dynamics algorithm is an all-to-all exchange of messages of length
K × N/P , where K is a constant. All-to-all communication patterns will be analyzed
in detail in the following sections.
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3 Routing in d-meshes

Let the topology of a d-mesh consist of N = X × Y nodes. The nodes are placed in
Y rows each of length X and they can thus be uniquely represented by pairs (x, y),
0 ≤ x < X , 0 ≤ y < Y with each node (x, y) located in the x th column and yth

row. Also, each node has d bidirectional links (where d is an even integer and d ≥ 4)

that can be enumerated as li = (lix , liy ), 1 ≤ i ≤ d, 0 ≤ lix ≤ X and 0 ≤ liy ≤ Y .
Let x ⊕n y be defined as x+(modulo n) y and x �n y as x−(modulo n) y. The first four
links, which must always be present, are l1 = (1, 0), l2 = (−1, 0), l3 = (0, 1), and
l4 = (0,−1). Therefore, in d-meshes each node (x , y) is always connected to nodes
(x ⊕X 1, y), (x �X 1, y), (x, y ⊕Y 1), and (x, y �Y 1), which is also the definition of
standard meshes. Consequently, 4-meshes and standard meshes are identical. Another
restriction is the requirement of symmetrical links. That is, if the link li = (lx , ly)

is chosen, then the link li+1 = (−lx ,−ly) must also be used. Therefore d-meshes
are completely defined by choosing d/2 − 2 links. These links are regarded as free
links. Let us emphasize that each node has the same set of links so that the graph
remains isomorphic. As an illustration consider an 8-mesh with N = 256 = 16 × 16
nodes and two free links, namely (4,−1) and (1,−5), as shown in Figure 1. Other
configurations of free links might be chosen. Having the same number of nodes and
links, these selections result in different diameters of corresponding topologies. d-
meshes with the smallest possible diameter for a constant N are defined as optimal

(4,-1)

(-4,1)

(-1,5)

(1,-5)

(1,0)

(-1,0)

(0,-1)

(0,1)

l7

l6

l2 l3

l4 l1
l5

l6

Fig. 1 An optimal 8-mesh for N = 16 × 16 = 256 nodes with the diameter equal to 5. Only directly
connected links (1, 0), (−1, 0), (0,1), (0, −1), (4, −1), (−4, 1), (1, −5), (−1, 5) to the central node (0, 0)

are shown
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d-meshes. The 8-mesh shown in Figure 1 is one of the optimal 8-meshes with N = 256
nodes.

The distance between nodes u and v is considered as the number of communication
steps (hops) on a shortest path between u and v. Additional introduced free links
contribute to a smaller distance and also to a smaller diameter of the topology. The
diameter of the 8-mesh given above is 5. The diameter of a 4-mesh with the same
number of nodes is 16, while the diameter of a hypercube with 256 nodes is 8. The-
refore, the optimal 8-mesh is better than the hypercube of the same size and degree
regarding the diameter. A comparison of d-meshes with other topologies in terms of
their diameters and average distances can be found in [13]. However, the diameter
of a topology alone does not suffice for its evaluation and comparison. The routing
algorithms for collective communication must also be adapted to efficiently use the
additional links.

The current trend in personal computer clusters is the use of multiprocessor com-
puters within a cluster. Such computers are mapped in a straightforward fashion to
d-meshes. The processors (most often 2 or 4) are mapped to sequential nodes in the
mesh, either vertically or horizontally; e.g., both nodes (0, 0) and (0, 1) would be in
the same computer in a 2-processor SMP computer, and similarly for nodes (0, 2)
and (0, 3) and further. The number of computers, each with p processors, required
for a N -node d-mesh is N/p. It is important to note that all of the processors in one
computer share their outside links. If 2-processor computers are arranged in columns
as nodes (0, 0) and (0, 1), they share the physical link (1, 0) for the logical links to node
(1, 0) and node (1, 1). It must be noted that the link between the processors (0, 0) and
(0, 1), implemented by the system bus, is much faster than the outside communication
links.

3.1 One-to-one routing

In one-to-one routing, a message is sent from source node vsource = (xs , ys) to
destination node vdest = (xv , yv). Minimal paths between nodes can be determined
by a computer program that generates routing tables. Using well known approaches
such minimal spanning trees (MST) [19] the distances from a node, say (0,0), to
any other node, are calculated and stored in a two-dimensional array. The distance
from (0, 0) to (x, y) is stored in the cell [x][y] of the array. By using regularity and
toroidal properties of d-meshes the distance between vsource and vdest is the same as
the distance between (0, 0) and (xd �X xs, yd �Y ys). The distances between nodes
can therefore be calculated only once.

The minimal path between two nodes is determined by using the distance table.
Suppose that the distance between vsource and vdest is D. First determine all d neigh-
bors of vsource with the distance D − 1 to vdest . Sending the message to any of these
nodes sets the message one step closer to its destination. Iterating this D times the
message arrives to its destination by using some minimal path. After performing the
same procedure for each node, the routing table is finished. It size, for every node, is
d × N bits. During the routing through the minimal path, the node router has to extract
the destination address (x, y) and read the next hop direction from the routing table.
Detailed algorithms for routing in d-meshes are given in [20].
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(x,y)
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Fig. 2 An example of the translation of a spanning tree of depth 1 in an 8-mesh, from position(x, y)—
black nodes, to position (x + 5, y + 3)— gray nodes

3.2 One-to-all routing

For one-to-all communication, routing tables of size d ∗ N bits are needed, in general,
on every node. The tables are filled by applying the MST initiated from each node.
Information on links belonging to the MSTs is saved in the routing table at the address
addr = yi X + xi . Using MSTs guarantees that the number of steps in one-to-all
communication is equal to the diameter of the interconnection network. The expen-
sive multiple calculations can be avoided because of the isomorphism of d-meshes.
Because all MSTs are isomorphic, they can be translated along the d-mesh. The trans-
lation for (dx, dy) is defined as the movement from (xi , yi ) to (xi ⊕X dx, yi ⊕Y dy).
If a connection exists in the MST between nodes (x, y) and (w, z), there is also a
connection between (x ⊕X dx, y ⊕Y dy) and (w ⊕X dx, z ⊕Y dy) after translation.
An illustrative example of translation is shown in Figure 2. After an initial genera-
tion of MST and all possible N translations, the routing tables of all nodes are filled.
We could see that the routing tables for one-to-one and one-to-all communication are
different; therefore, a communication type flag should be inserted in message headers.

3.3 All-to-all routing

Considering that d-meshes use 4-meshes as its basis, all-to-all routing algorithm for
toroidal 4-meshes can also be used in d-meshes but the advantage of additional links
is then lost. Let us now first consider the algorithm in 4-meshes. Its idea is based on
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v1

v0

Fig. 3 Example of two of many possible virtual rows for the initiating node v0 (black nodes) with a free
link (4, −1) and v1 (gray nodes) with free link (4, 0), both with diameter of 3

exchanging the messages among the rows first, to merge these messages into one grou-
ped message and then to exchange these grouped messages among the columns [9,12].
Note that some additional routing logic for merging the messages, switching between
rows/columns, and checking for the presence of all messages from rows/columns is
needed. The number of required steps for such all-to-all communication in a 4-mesh
isX/2 + Y/2.

In d-meshes, additional free links can be used for the distribution of data among a
group of connected nodes that constitute a virtual row, which contain exactly one node
from each column. Each node has its own virtual row and all of them are isomorphic.
The same principle is used also for virtual columns, with only one node from each
virtual row. Consider a simple example (see Figure 3) based on a 6-mesh. The free
link of the upper virtual row is l = (lx , ly) = (4,−1) and the starting node v0. In
the first step, nodes (1, 0), (0 �X 1, 0) = (−1, 0), (0 ⊕X lx , 0 ⊕Y ly) = (4,−1) and
(0�X lx , 0�Y ly) = (−4, 1) are added to the group, then (2, 0), (0�X 2, 0) = (−2, 0),
(0 ⊕X lx ⊕X 1, 0 ⊕Y ly) = (5,−1) and (0 �X lx �X 1, 0 �Y ly) = (−5, 1) and so on.
Before accepting a new node in the group, a check is performed whether the new node
is the first from its column. Suppose that we reached the node (lx − 1, 0) = (3, 0). A
new node can not be added by using link (1, 0) because a node from this column is
already in the group. The procedure continues with node (lx + 2, ly) = (6,−1) and
is repeated until all of the column nodes are in the group.

The principle used in the given example can be easily generalized to 2k links used
for building virtual rows (2k ≤ d − 2 since at least two links must be used for virtual
columns). Due to the symmetry, only the right half of the group is examined. Starting
with v0 in the first step, the nodes connected by k links are added to the group. Then
a move to the right node again contributes k new nodes, etc., until an already visited
column is reached. Then the nearest group node that can reach new nodes by using link
(0,1) is found and the algorithm continues. This is repeated until all the columns are
visited. Obviously, the number of steps needed for the formation of a group depends
on the free links. The most efficient links would divide the right part of a group with
X/2 nodes on k equidistant intervals. The length of interval determines the number
of steps needed for broadcasting the message to nodes in the right part of the group,
and, due to the symmetry, also for the left part, which results in X/k steps. The links
needed for construction of a group are stored in all-to-all routing tables. In general,
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v0 v0

Fig. 4 Broadcast of a message from node v0 (in black) through rows and columns in a 6-mesh with the
free link (4, 3) (left) an 8-mesh with the free links (4, −1) and (0, 4) (right). The number of nodes is
N = 16 × 16 = 256 and the number of steps for all-to-all communication in 6-mesh and 8-mesh is 11 and
6, respectively

two distinct tables are needed for the virtual rows and the virtual columns. The routing
logic is the same as in 4-meshes.

When distributing data in rows the basic normalized message length is 1, but when
distributing data in columns, the basic normalized message length increases to X since
the data from a whole row is being transferred instead of from a single node’s. It is
therefore advantageous to use the free link of a 6-mesh for transfers in virtual columns
to decrease the transfer time. In the same manner, mapping multi-processor computers
so that the multiple processors span columns instead of rows provides also decreases
the total transfer time since the larger messages transferred in the columns travel over
the faster bus link between multiple processors in a computer.

A broadcast of a message from the initial node (black) to all of the nodes of its
virtual row and column is denoted by links and shown in Figure 4. The number of
steps for an all-to-all algorithm in the 6-mesh and 8-mesh, is 11 and 6, respectively.
Note that the same number of steps is needed if a single column and row is added to
the system N = 17 × 17 = 289, which has now an odd number of nodes in columns
and rows.

3.4 Comparison of performance results

A simple model of a communication channel was used in our analysis and is based
on the latency and bandwidth of the channel [9]. The latency is the delay between
the beginnings of the sending and receiving procedures while the bandwidth is the
amount of data transferred in a time unit. The communication time for a single mes-
sage is tc = latency + message size/bandwidth, and the communication time for a
global communication is tg = steps × latency + data volume/bandwidth, where data
volume represents the sum of maximal message sizes over all communication steps.
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Table 1 All-to-all communication steps/data volume with the diameter in brackets

N hypercube 4-mesh 8-mesh

16=4×4 4/15 (4) 4/10 (4) 2/5 (2)
64=8×8 6/63 (6) 8/36 (8) 4/18 (3)
256=16×16 8/255 (8) 16/136 (16) 6/102 (5)
1024=32×32 10/1023 (10) 32/528 (32) 10/462 (7)

The routing procedure has an impact on the number of communication steps and data
volume, both of which have a proportional impact on the communication time.

Hypercubes, 4-meshes, and d-meshes have been compared regarding the number
of communication steps and data volume needed by all-to-all algorithms. To be able
to directly compare the above topologies, the meshes were of size N = X × X = 2d ,
where d is the dimension of the hypercube. The normalized size of a single message
was equal to 1 and the communication can run concurrently in both directions.

In a hypercube, d = log N , which is the number of communication steps for all-to-
all communication. The data volume of a global communication in hypercubes is a sum
of partial data volumes in each dimension, which is equal to 20+21+22+· · ·+2d−1 =
2d − 1.

From the given description of all-to-all communication in toroidal 4-meshes it fol-
lows that the number of communication steps is equal to X /2 for rows and columns,
respectively. In rows, only a single message is transferred in each step on each hori-
zontal link. In columns, the merged messages from the row has the length X . The data
volume for a 4-mesh is therefore (X + X2)/2.

In optimal d-meshes, f free links can be observed for the right part of the virtual
row together with the links (1,0) and (0,1). Supposing that d = 2 f and that the virtual
row can be divided into f equidistant parts, the number of required communication
steps needed for gathering the messages from all nodes in a virtual row is X/ f = 2X/d
and the same for columns, which gives the minimum number of communication steps
4X/d. It is difficult to generally assess the total data volume and the data volumes for
every step.

Comparing expressions for the number of all-to-all steps for hypercubes and
d-meshes, we get: d = log N < 4X/d = 4

√
N/d. Knowing that N = 2d we

obtain the simplified expression d4 < 2d+4, which is solved for d < 8. Hypercubes
need more communication steps than d-meshes if the number of nodes is less than 512.

Table 1 summarizes above results for the number of communication steps/data
volume needed in all-to-all communication for hypercubes, toroidal 4-meshes and 8-
meshes. The theoretical minimum is given in brackets by the network diameter. Note
that for most networks with a number of nodes not equal to a power of 2, optimal
d-meshes also outperform hypercubes in the number of communication steps.

4 Conclusion

We have shown that d-meshes can be applied successfully in molecular dynamics simu-
lation. They compete with hypercubes and other interconnection topologies [21,22] in
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terms of the number of required steps and data volume needed in all-to-all communi-
cation. Other advantages of d-meshes are in their scalability, regularity, isomorphism,
and layered structure. Since they are based on routing tables, they have potential for
dynamic reconfiguration and fault tolerance. We also suggest their use in existing
computing clusters in order to improve communication performance. New collective
communication algorithms will be investigated in the future to exploit the remaining
potential of optimal d-meshes.
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